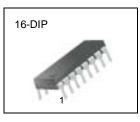
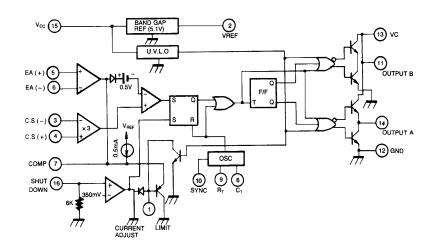
UC3846 SMPS Controller


SEMICONDUCTOR IM

Features


- · Automatic Feed Forward Compensation
- Programmable Pulse by Pulse Current Limiting
- Automatic Symmetry Correction in Push-Pull
- ConfigurationEnhanced Load Response Characteristics
- Parallel Operation Capability for Modulator Power Systems
- Differential Current Sense Amplifier with Common Mode Range
- Double Pulse Suppression
- 200mA Totem-Pole Outputs
- ±2% Band gap Reference
- Under-Voltage Lockout
- Soft-Start Capability
- Shutdown Terminal
- 500KHz Operation

Description

The UC3846 control IC provides all of the necessary features to implement fixed frequency, current mode control schemes while maintaining a minimum external parts count. The superior performance of this technique can be measured in improved line regulation, enhanced load response characteristics, and a simpler, easier-to-design control loop. Topological advantages include inherent pulse-by-pulse current limiting capability, automatic symmetry correction for push-pull converters, and the ability to parallel "power module" while maintaining equal current sharing. Protection circuitry includes built-in-under-voltage lockout and programmable current limit in addition to soft-start capability. A shutdown function is also available which can initiate either a complete shutdown with automatic restart or latch the supply off. Other features include fully latched operation, double pulse suppression, deadtime adjust capability, and $\pm 2\%$ trimmed bandgap reference. The UC3846 features low outputs in the OFF state.

Internal Block Diagram

©2000 Fairchild Semiconductor International

Absolute Maximum Ratings

Parameter	Symbol	Value	Unit
Supply Voltage	Vcc	40	V
Collector Supply Voltage	Vc	40	V
Output Current, Sink of Source (Peak)	IO	500	mA
Reference Output Current	IREF	30	mA
Soft Start Sink Current	ISINK(S.S)	50	mA
Sync Output Current	ISYNC	5	mA
Error Amplifier Output Current	IO(E.A)	5	mA
Oscillator Changing Current	ICHG(OSC)	5	mA
Power Dissipation ($T_A = 25^{\circ}C$)	PD	1000	mW
Operating Temperature	TOPR	0 ~ +70	°C
Storage Temperature	TSTG	-65 ~ +150	٥°
Lead Temperature (Soldering, 10sec)	TLEAD	+300	۵°

Electrical Characteristics

(V_{CC}=15V, T_A=0°C to +70°C, unless otherwise specified)

Parameter	Symbol	Conditions	Min.	Тур.	Max.	Unit
REFERENCE SECTION						
Reference Output Voltage	Vref	$T_J = 25^{\circ}C$, $I_{REF} = 1mA$	5.00	5.10	5.20	V
Line Regulation	ΔV_{REF}	Vcc = 8 to 40V	-	5	20	mV
Load Regulation	$\Delta VREF$	IREF1 to 10mA	-	3	15	mV
Temperature Stability(Note 6)	STT	-	-	0.4	1.0	mV/°C
Output Voltage Range (Note 6)	VREF	Line,Load,Temp	4.95	-	5.25	V
Short Circuit Output Current	ISC	VREF = 0V	-10	-45	-	mA
Output Noise Voltage(Note 6)	VNO	f = 10Hz to 10KHz, TJ = 25°C	-	100	-	uV
Long-Term Stability(Note 6)	ST	TJ = 125°C, 1KHz	2	5	8	mV

Electrical Characteristics

(V_{CC}=15V,T_A=0°C to +70°C, unless otherwise specified)

Parameter	Symbol	Conditions	Min.	Тур.	Max.	Unit
OSCILLATOR SECTION (Note 2))					
Initial Accuracy	ACCUR	TJ = 25°C	39	43	47	KHz
Frequency Change with Voltage	Δf/ΔVCC	VCC = 8 to 40V	-	1	2	%
Frequency Change with Temperature (Note 6)	$\Delta f/\Delta T$	-	-	1	-	%
Sync Output High Level	VOH(SYNC)	-	3.9	4.35	-	V
Sync Output Low Level	VOL(SYNC)	-	-	2.3	2.5	V
Sync Input High Level	VIH(SYNC)	V8 = 0V	3.9	-	-	V
Sync Input Low Level	VIL(SYNC)	$V_8 = 0V$	-	-	2.5	V
Sync Input Current	II(SYNC)	Sync Voltage = 3.9V, V ₈ = 0V	-	1.3	1.5	mA
ERROR AMPLIFIER SECTION						
Input Offset Voltage	Vio	-	-	0.5	5	mV
Input Bias Current	IBIAS	-	-	-0.6	-1	uA
Input Offset Current	lio	-	-	40	250	uA
Common-Mode Range	VCM	VCC = 8 to 40V	0	-	Vcc2	V
Open Loop Voltage Gain	Gvo	$V_{O} = 1.2$ to 3V, $V_{CM} = 2V$	80	105	-	dB
Unity Gain Bandwidth(Note 6)	BW	$T_J = 25^{\circ}C$	0.7	1.0	-	MHz
Common Mode Rejection Ratio	CMRR	$V_{CM} = 0$ to 38V, $V_{CC} = 40V$	75	100	-	dB
Power Supply Rejection Ratio	PSRR	VCC = 8 to 40V	80	105	-	dB
Output Sink Current	ISINK	$V_{IO} = -15 mV$ to 5V, $V_7 = 2.5V$	2	6	-	mA
Output Source Current	ISOURCE	RL = 15KΩ	-0.4	-0.5	-	mA
High Output Voltage	Voн	RL = 15KΩ	4.3	4.6	-	V
Low Output Voltage	Vol	-	-	0.7	1	V
CURRENT SENSE AMPLIFIER S	ECTION		•	•	•	
Amplifier Gain (Note 1, 3)	Gv	V ₃ = 0V, Pin 1 open	2.5	2.75	3.0	V
Maximum Differential Input Signal (V4 - V3) (Note 1)	VI(DIFF,MAX)	$R_L = 15K\Omega$, Pin 1 open	1.1	1.2	-	V
Input Offset Voltage (Note 1)	Vio	V ₁ = 0.5V, Pin 1 open	-	5	25	mV
Common Mode Rejection Ratio	CMRR	V _{CM} = 1 to 12V	60	83	-	dB
Power Supply Rejection Ratio	PSRR	V _{CC} = 8 to 40V	60	84	-	dB
Input Bias Current (Note 1)	IBIAS	V ₁ = 0.5V, Pin 7 open	-	-2.5	-10	uA
Input Offset Current (Note 1)	lio	V1 = 0.5V, Pin 7 open	-	0.08	1	uA
Delay to Outputs (Note 6)	tD	TJ = 25°C	-	200	500	ns

Electrical Characteristics

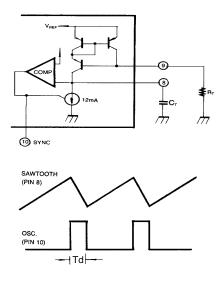
(V_{CC}=15V, T_A=0°C to + 70°C, unless otherwise specified)

Parameter	Symbol	Conditions	Min.	Тур.	Max.	Unit	
CURRENT LIMIT ADJUST SECTION							
Current Limit Offset Voltage (Note 1)	VIO(C.L)	V3 = 0V V4 = 0V, Pin 7 open	0.45	0.5	0.55	V	
Input Bias Current	IBIAS	$V_5 = V_{REF}, V_6 = 0V$	-	- 10	- 30	uA	
SHUTDOWN TERMINAL SECTION							
Threshold Voltage	Vth	-	250	350	400	mV	
Input Voltage Range	VI	-	0	-	Vcc	V	
Minimum Latching Current (Note 4)	I(LATCH,MIN)	-	3.0	1.5	-	mA	
Maximum Non-Latching Current (Note 5)	I(NONLATCH,MAX)	-	-	1.5	0.8	mA	
UNDER-VOLTAGE LOCKOUT SECTION							
Start Threshold	VTH(ST)	-	7	7.7	8.4	V	
Threshold Hysteresis	VHYS	-	0.45	0.75	1.05	V	
OUTPUT SECTION							
Collector-Emitter Voltage	VCEO	-	40	-	-	V	
Collector Leakage Current	ILEAK	VC = 40V	-	-	200	uA	
Low Output Voltage 1	V _{OL} 1	ISINK = 20mA	-	0.1	0.4	V	
Low Output Voltage 2	V _{OL} 2	ISINK = 100mA	-	0.4	2.1	V	
High Output Voltage 1	V _{OH} 1	ISOURCE = 20mA	13	13.5	-	V	
High Output Voltage 2	Voh 2	ISOURCE = 100mA	12	13.5	-	V	
Rise Time (Note 6)	tR	CL = 1nF, TJ = 25°C	-	50	300	us	
Fall Time (Note 6)	tF	CL = 1nF, TJ = 25°C	-	50	300	us	
TOTAL STANDBY CURRENT							
Supply Current	Icc	-	-	17	21	mA	

Notes :

1. Parameter measured at trip point at latch with $V_5 = V_{REF}$, $V_6 = 0V$

2. $R_T = 10K\Omega$, $C_T = 4.7nF$


3. Amplifier gain definde as:

$$G = \frac{\Delta V7}{\Delta V4}; \Delta V_4 = 0 to 1.0 V$$

4. Current into Pin 1 guaranteed to latch circuit in shutdown state.

5. Current into Pin 1 guaranteed not to latch circuit in shutdown state.

6. These parameters, although guaranteed over the recommended operating conditions, are not 100% tested in production.

OUTPUT DEADTIME(T_d)

Figure 1. UC3846 Oscillator Circuit

Output deadtime is determined by the external capacitor, C_T , according to the formula: $Td(us) = 145C_T(\mu F)$ For large values of R_T : $T_d(us) = 145C_T(uF)$ Oscillator frequency is approximately

$${}^{L}F)\left(rac{12}{12-rac{3.6}{R_{T}(K\Omega)}}
ight)$$

by the formula: $f_T(KHz) = \frac{2.2}{R_T(K\Omega)C_T(\mu F)}$

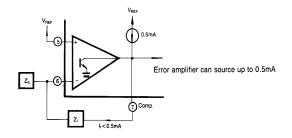


Figure 2. Error Amplifier Output Configuration

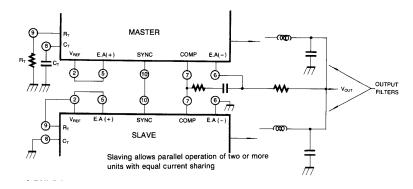


Figure 3. Parallel Operation

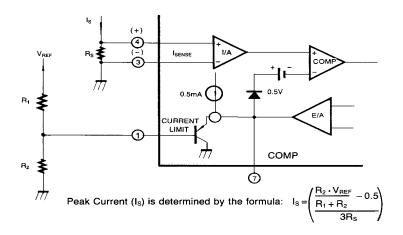


Figure 4. Pulse By Pulse Current Limiting

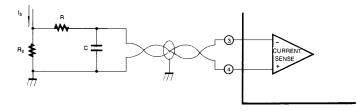
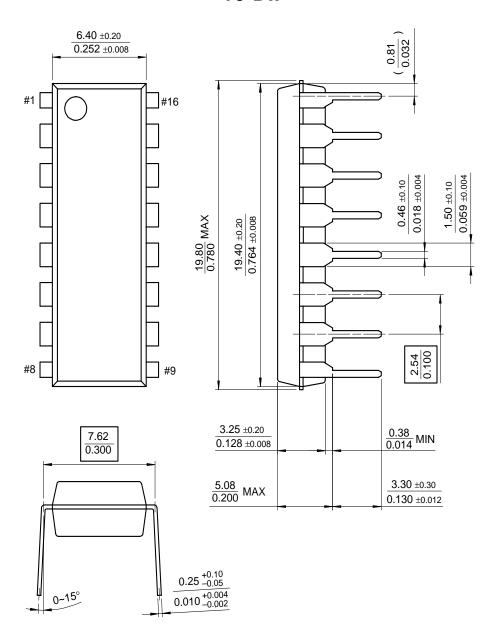



Figure 5. Current Sense Amp Connections

A small PC filter may be required in some applications to reduce switch transients Differential input allows remote, noise free sensing.

Mechanical Dimensions

Package

16-DIP

UC3846

Ordering Information

Product Number	Package	Operating Temperature
UC3846N	16 DIP	0 ~ + 70°C

UC3846

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR INTERNATIONAL. As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
- www.fairchildsemi.com

 A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.