

内置高压功率开关电流模式PWM+PFM控制器系列

描述

SD6830 是一款高度集成的电流模式 PWM+PFM 控制芯片。内置振荡器、内置高压管和降频功能,IC 具有完整的自恢复保护功能。该电源控制器工作于典型的反激拓扑电路中,构成简洁的 AC/DC 电源转换器。 在85V-265V 的宽电压范围内提供 12W 的 连续输出功率。

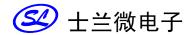
主要特点

- ◆ 内置振荡器
- ◆ 内置 700V 高压功率开关
- 快速高压启动
- 低启动电流和低工作电流
- ◆ 绿色降频功能,低待机功耗
- ◆ 全面的自恢复保护功能:过压、欠压、短路、过载以及过温保护□
- ◆ 精确温度补偿,精确逐周期电流控制
- ◆ 宽电压输出功率 12W,峰值输出 15W
- ◆ 高压输出功率 15W, 峰值输出 18W
- ◆ 外围元件少,整机成本低

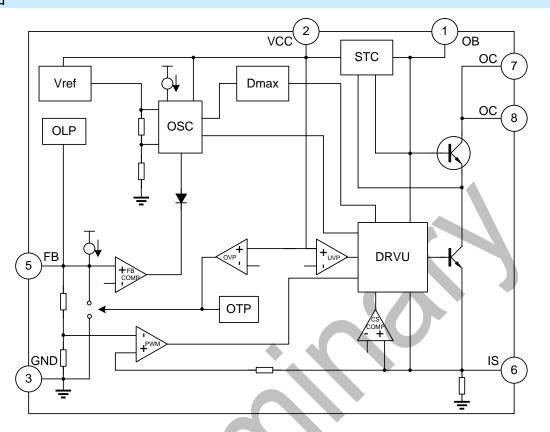
应用

- ◆ 电源适配器
- 电池充电器
- ◆ 便携式充电电源
 - 家电控制器电源
- ◆ DVD/DVB 电源
- ◆ ATX 待机电源

产品规格分类


产品名称	封装类型	打印名称	材料	包装
SD6830	DIP-8-300-2.54	SD6830	无铅	料管

典型输出功率能力

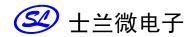

-	190~	265V	85~265V		
产品	适配器	开放式	适配器	开放式	
SD6830	12W	15W	10W	12W	

杭州士兰微电子股份有限公司

http://www.silan.com.cn

内部框图

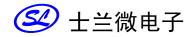
极限参数

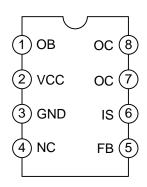

	A		
参数	符号	参数范围	单 位
OC集电极承受电压	V _{OC,MAX}	700	V
峰值开关电流	I _{OC,MAX}	1	Α
供电电压	V _{CC,MAX}	18	V
总耗散功率	P₀	1	W
工作温度	T _{ORG}	-20~+85	°C
贮存温度	T _{STG}	-55~+150	°C
焊接温度	Tw	+260,10s	°C

注: 1. 脉冲宽度由最大结温决定;

2. L=51mH, T_J=25°C(起始)。

推荐工作条件


参数	符号	最小值	典型值	最大值	单位
OC集电极承受电压	Voc	-		600	V
峰值开关电流	loc	1		0.8	А
供电电压	Vcc	5	6	12	V


电气参数(除非特殊说明, $T_a=25$ °C, $V_{cc}=7.0$ V, $R_{is}=1$ Ω)

参数	符号	测试条件	最小值	典型值	最大值	单位
输出部分						
开关管最大耐压	V_{OCM}	V _{cc} =0V, I _{oc} =2mA	700	-	ı	V
开通饱和压降	V_{ocs}	I _{oc} =600mA	ı	1	1	V
输出上升时间	T_R	C _L =1nF	-	-	75	ns
输出下降时间	T_{F}	C _L =1nF	-	-	75	ns
开关关延时	T_{OFF}	L _p =1.2mH	-	500	-	ns
高压启动电流源	I _{CHAGE}		1	-	-	mA
振荡器部分						
震荡频率	f		-	61	-	KHz
频率随电压变化率		VFB=2.5V	-	-	1	%
频率随温度变化率		Ta=0~85°C	-	-	1	%
反馈部分						
反馈上拉电流	I_{FB}	V _{FB} =2.5V	- (0.50	-	mA
反馈下拉电阻	R_{FB}			13	-	ΚΩ
电源抑制比		V _{CC} =5~9V	-	60	70	dB
电流取样部分						
电流取样门限	V_{IS}		-	0.625	-	V
IS对地电阻	R_{IS}		-	20	-	Ω
电源抑制比			-	60	70	dB
传输延时	T_{DELAY}		-	150	250	ns
脉宽调制部分						
最大占空比	D _{MAX}	VFB>4.5V	52	57	62	%
最小占空比	D _{MIN}		-	1.5	-	%
电源电流						
启动静态电流	I _{OP}		-	15	50	μΑ
静态电流	I _{SP}	VFB=0.2V	-	2.8	-	mA
启动电压	V_{START}		-	9.0	-	V
欠压保护电压	V_{STOP}		-	3.45	-	V
重启动电压	V _{AS}		-	2.1	-	V
过压保护门限	V_{OVP}		11.0	12.0	13.0	V

版本号: 0.2 共7页 第3页

管脚排列图

管脚说明

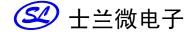
管脚号	管脚名称	I/O	功 能 描 述
1	ОВ		启动电源输入,外接启动电阻
2	VCC		电源输入脚
3	GND		接地脚
4	NC	I	悬空脚
5	FB	I/O	反馈脚
6	IS	I/O	逐周期电流采样脚,外接电流采样电阻
7、8	ОС	0	高压开关输出脚,接变压器初级线圈

功能描述

SD6830 是用于离线式开关电源集成电路。控制器包含有振荡频率发生器及各个保护功能。通过 IS 端电阻可以调节极限峰值电流。在轻载时,电路采用绿色模式,可以有效的降低电路的待机功耗。保护功能包括:欠压,过压,过载,短路和温度保护功能。使用 SD6830 可减少外围元件,增加效率和系统的可靠性。

1. 启动控制

启动阶段,内部基准,振荡器和各种保护电路没有开始工作。AC 输入电 压通过启动电阻,给功率管一个基极电 流,利用三极管的放大功能,OE 由功率管输入启动电流到 VCC。当 VCC 电压达到 9V 后芯片开始工作,进入正常工作状态。


2. PWM 控制

VCC 正常工作电压范围在 5-9V。 开关管的峰值电流大小由 FB 电压决定,此电压通过内部电阻分压产生基准,与 IS 斜坡电压进行比较,实现 PWM 控制。同时输出占空比还受最大占空比的限值,对 FB 的控制可以通过内部控制电路和外部反馈电路实现。

3. VCC 过压保护

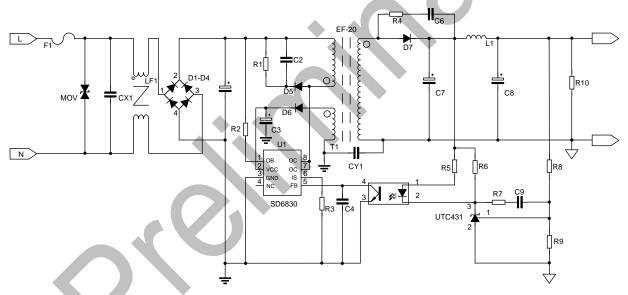
芯片内部集成了 VCC 过压保护电路,当 VCC 电压大于 12V,通过内部控制电路,把 FB 脚电压拉低,从而关闭输出;当 VCC 电压回到 12V 以下,芯片恢复输出。这种控制方式,最高使 VCC 电压钳位在 12V,保证 IC 可靠工作。

4. 电流限制

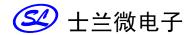
当 IS 的采样电压超过电流限制阈值, 0.625V 时, 关闭输出, 限制功率。

5. 绿色模式控制

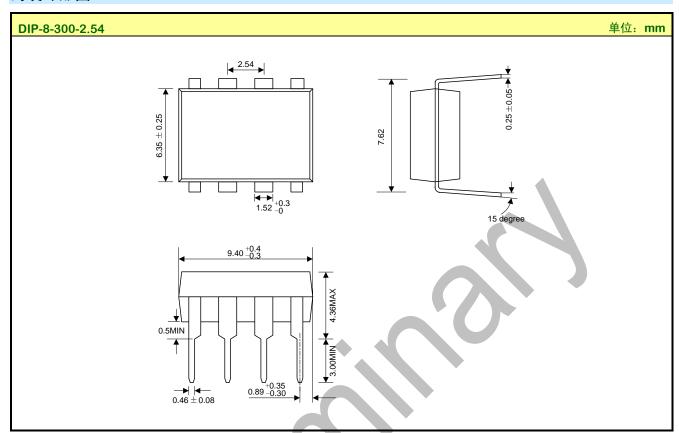
在空载或轻载下,输出电压升高, FB 电压拉低,当 FB 下降到一定值时振荡器周期将随之增加,FB 越小振荡器周期越宽,直到振荡器停振。


6. 功率管驱动

开周期,OB为功率管提供基极电流,OE下拉功率管的发射极到IS,而且基极采用比例电流驱动(基极驱动电流是IS电压的函数,当负载减轻时减小驱动降低损耗),若IS检测到FB指定电流则进入关周期;关周期,OB下拉,关断功率管。

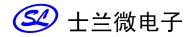

7. 过温保护

芯片内部集成了高精度温度保护模块。当芯片内部温度高于 150℃ 后,通过内部控制电路,把 FB 电压拉低,来调宽振荡器的周期,从而减小或关闭输出功率,使芯片温度不会超过 160℃。通过这种控制方式,避免了芯片过烧坏。


典型应用电路图

注:以上线路及参数仅供参考,实际的应用电路请在充分的实测基础上设定参数。

封装外形图


MOS电路操作注意事项:

静电在很多地方都会产生,采取下面的预防措施,可以有效防止 MOS 电路由于受静电放电影响而引起的损坏:

- 執作人员要通过防静电腕带接地。
- 设备外壳必须接地。
- 装配过程中使用的工具必须接地。
- ◆ 必须采用导体包装或抗静电材料包装或运输。

声明:

- ◆ 士兰保留说明书的更改权,恕不另行通知!客户在下单前应获取最新版本资料,并验证相关信息是否完整和最新。
- ◆ 任何半导体产品特定条件下都有一定的失效或发生故障的可能,买方有责任在使用 Silan 产品进行系统设计和整机制造时遵守安全标准并采取安全措施,以避免潜在失败风险可能造成人身伤害或财产损失情况的发生!
- 产品提升永无止境,我公司将竭诚为客户提供更优秀的产品!

产品名称:	SD6830	文档类型:	说明	书		
版 权:	杭州士兰微电子股份有限公司	公司主页:	http://www.silan.com.cn			
版 本:	0.2		作	者:	周伟江	
修改记录:						
1. 修订	攻 典型应用电路图					
版 本:	0.1		作	者:	周伟江	
修改记录:						
1. 初和	计					

